UNCLASSIFIED 426681

DEFENSE DOCUMENTATION CENTER

FOF

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

US ARMY ELECTRONICS EVELOPMEN 生 ACTIVITY

OF THE FIRST 62 METERS OF THE ATMOSPHERE

ERDA-100

DECEMBER 1963

14:1 1964

MEXICO

TURBULENCE CHARACTERISTICS

OF THE FIRST 62 METERS OF THE ATMOSPHERE

)___ By

Frank V. Hansen

ERDA-100

December 1963

ENVIRONMENTAL SCIENCES DEPARTMENT
U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT ACTIVITY
WHITE SANDS MISSILE RANGE
NEW MEXICO

ABSTRACT

Turbulent characteristics of the first 62 meters of the atmosphere in the vicinity of the U. S. Army Electronics Research and Development Activity's Meteorological Research Tower are established for neutral conditions. The assumption was made that the roughness length is a constant, but dependent upon wind direction, fetch, and the height of the roughness elements.

Data are presented for five recording periods during the late winter and early spring of 1958 and 1961. Computations of the basic wind profile and turbulence parameters are presented in tabular form.

CONTENTS

PAC	_
ABSTRACT ii	i
INTRODUCTION	1
THE METEOROLOGICAL TOWER FACILITY	1
WIND PROFILE HYPOTHESES	1
The Surface Shearing Stress, Friction Velocity, and	2
The Table 11 and a land and a land	2
DATA ANALYSIS	3
BOUNDARY CONDITIONS	4
DISCUSSION	4
The Wind Profile	-
CONCLUSIONS	0
LIST OF SYMBOLS	1
REFERENCES 4	_
FIGURES	•
1 11. Logarithmic Wind Profiles 24 - 34 12. Roughness Length vs Wind Speed, Neutral Conditions 35 13. Coefficient of Drag vs Wind Direction 36 14. Standard Deviation of Wind Direction vs Stability Ratio 39	
TAB LES	
I III. Wind and Temperature Data 5 - 7 IV V. Wind and Temperature Data by the Hour 8 - 11 VI X. Wind and Temperature Data per 10-Minute Interval 12 - 16 XI XV. Boundary Parameters by 10-Minute Intervals 17 - 23 XVI. Estimated Range in Standard Deviations of Wind Direction for Various Stability Stratifications 38	•

INTRODUCTION

The motion of the atmosphere near the surface of the earth is rarely as simple as described by the theory of laminar flow. Normally, flow in the atmosphere consists of a fairly simple mean motion on which is superimposed extremely complicated secondary or eddy motions of oscillatory, but not necessarily periodic, character. The superimposed eddy motion results in the often chaotic wind profile and turbulent spectrum observed in the boundary layer.

Fluctuations about the mean flow in the atmosphere are the function of a number of conditions, including the air-earth interface and the exchange of energy between the atmosphere and the underlying surface. These boundary conditions plus the prevailing lapse rate are the determining factors for variations in the local wind profile. The basis for any study concerning turbulent, or eddy motion in the atmosphere is the establishment of initial boundary conditions. This report is concerned with establishing these basic parameters for the immediate vicinity of the U. S. Army Electronics Research and Development Activity's (USA ERDA) Meteorological Research Tower.

THE METEOROLOGICAL TOWER FACILITY

The meteorological tower facility was established for basic research with respect to wind effects on unguided rockets, including wind profile studies, the spectrum of turbulence, and the prediction of the local wind profile. The tower instrumentation, the surrounding torrain, and the climatology of White Sands Missile Range (WSMR), New Mexico, have been described adequately elsewhere [1, 2].

WIND PROFILE HYPOTHESES

The two hypotheses most commonly used to describe the wind profile in the boundary layer are the power law and the logarithmic law. The power law, better known as the "seventh root law" or Schmidt's conjugate power law, normally takes the form

$$\overline{u} = \overline{u}_1 \quad \left(\frac{z}{z_1}\right)^p$$

where u is the mean wind speed at height z,

 $\overline{\mathbf{u}}_1$ is the mean wind speed at height \mathbf{z}_1 , and \mathbf{p} is the profile index.

Its use is limited to profiles over surfaces which are either bare or covered with very short vegetation. The profile index p is also dependent upon the vertical temperature gradient.

The logarithmic profile is based upon a steady two-dimensional motion in the proximity of a surface z=0 with \overline{u} as a function of z only. In fully developed turbulent flow, the object is to find a velocity profile \overline{u} (z) which is consistent with a given shear stress and under the assumption that the temperature gradient is near adiabatic. The equation has taken many forms, the most common being attributed to Rossby [3]:

$$\frac{\overline{u}}{u_{\perp}} = \frac{1}{k} \ln \left(\frac{z + z_0}{z_0} \right)$$

for a fully rough surface, where

 $\overline{\mathbf{u}}$ = mean wind speed.

$$u_* = \left(\frac{\tau_0}{\rho}\right)^{\frac{1}{2}} = \text{friction velocity,}$$

k = von Karman's constant,

z = height,

zo = roughness length.

Utilizing the power and logarithmic laws in the preceding forms, expressions for the boundary layer parameters can be derived.

The Roughness Length: The roughness length, z_0 , a constant of integration, is related to the height of the surface irregularities by $z_0 = \epsilon/30$. This implies that the mean velocity tends toward zero at a height depending upon the average length of the roughness elements. The roughness length z_0 can be easily determined from the \overline{u} , log z plot under adiabatic or neutral lapse conditions.

The Surface Shearing Stress, Friction Velocity, and Drag Coefficient: The Reynolds stresses indicate that fluctuations in velocity cause transport of momentum across a surface in a fluid. Ir general, the Reynolds stresses outweigh the viscous stresses, which often may be neglected in problems of turbulent motion. The horizontal shearing stress [3] is given by:

where p is mean density and u'w' are mean fluctuating or eddy velocities. The shearing stress is assumed to be independent of height within the first 50-100 meters above the surface, according to Lettau [4], and related to the friction velocity by

$$u_{\star}^{2} = \left| \frac{\tau}{0} \right| = \left(\left| \overline{u^{\dagger} w^{\dagger}} \right| \right)^{\frac{1}{2}}$$

and to the surface shearing stress and the coefficient of drag by

$$\tau = \tau_0 + z \frac{\partial \overline{P}}{\partial x}$$

$$\tau_0 = \frac{1}{2} \rho C_D u_s^2$$

where us is the wind velocity "near" the surface. Since

$$C_{D} = \frac{2\tau_{O}}{\sigma u^{2}}$$

it follows that

$$C_{D} = 2 \left(\frac{u_{\star}}{\overline{u}}\right)^{2} = \frac{2k^{2}}{\left(\ln^{2} + \frac{z_{0}}{2}\right)}$$

assuming the Rossby profile.

The Eddy Viscosity: Sutton [5] states that a basic step in turbulence research is to adopt the fundamental ideas of the kinetic theory of gases by expressing the transfer of momentum or any other suitable entity, by means of virtual coefficients of viscosity, conductivity, and diffusivity, defined in much the same way as their molecular counterparts. These exchange coefficients, expressions for the turbulent flux, may be derived independently of any theory of the structure of eddy motion. The eddy viscosity, or the turbulent transfer of momentum by eddies giving rise to an internal fluid friction, is defined as

$$\frac{\tau}{\rho} = (v + K_M) \frac{d\overline{u}}{dz} \approx K_M \frac{d\overline{u}}{dz} \text{ if } v \ll K_M$$

$$K_{M} = \frac{\overline{u^*w^*}}{\frac{d\overline{u}}{dz}}$$

where K_M is the eddy viscosity. From the above relationship and the Rossby profile, the eddy viscosity can be defined as

$$K_M = ku_*$$

which leads to a valid approximation for boundary conditions.

DATA ANALYSIS

Wind and temperature profiles originally observed for spectral analysis purposes at the tower site were used to determine boundary conditions and to

Investigate the application of the profile hypotheses to the basic data. The raw data were recorded on five different days, and the length of recording varied from one to six hours. One-hour samples were obtained on 12 February 1958, 13 February 1958, and 7 March 1958, and consisted of wind velocity and temperatures for nine tower levels. Six-hour samples were obtained on 15 and 16 March 1961 for four tower levels. The 1958 data were reduced as five-second visual averages for the wind velocities, with temperatures read every 44 seconds. The 1961 data were reduced as four-second and sixty-second averages for the winds and temperatures, respectively.

All data were punched on Hollerith cards for machine analysis. Wind and temperature profiles by the hour and by ten-minute intervals were then computed using the Philos 2000 computer. The fifteen hourly means and deviations are presented in Tables I to V. The 90 ten-minute mean profiles were used to establish boundary conditions for the tower data (Tables VI to X).

BOUNDARY CONDITIONS

To establish the basic turbulence parameters for the tower area, the wind and temperature profiles were inspected for adiabatic or neutral conditions. Of the 90 profiles available, 11 were found that met the criteria. The 11 wind profiles were plotted (Figures 1-11) on semi-logarithmic paper, and the line of regression determined by a least squares fit. The $\overline{\mathbf{W}}$, $\log z$ intercept was taken as the roughness length z_0 . The equivalent surface roughness vs wind speed at 4 3 and 4.6 meters is shown in Figure 12.

The average height of the roughness elements surrounding the tower facility is approximately three meters, giving a theoretical z_0 of tencentimeters, which is in close agreement with the observed data and with the results of other experimenters in the field.

Assuming the roughness length to be valid for the tower area, values of z_0 picked from the curve (Figure 12) were used to compute the friction velocities for each ten minute profile. The remainder of the boundary parameters under discussion were also computed at this time and are presented in Tables XI through XV. All calculations were for a height range of 4 3 to 4.6 meters above the surface and a fetch* of 40 to 70 meters

DISCUSSION

A careful examination of the boundary parameters indicates a dependence on the mean wind speed; however, in the case of the coefficient of drag, $C_D,$ it is apparent that the wind direction has a decided effect. The larger values of C_D (0.029) to (0.032) tend to occur when the mean wind direction is from the quadrant in which the largest roughness elements are with respect to the tower (Figure 13)

^{*}Fetch is defined as the upwind distance from nearest obstruction to the instrumentation

TABLE I WIND AND TEMPERATURE DATA FOR 1001-1100 MST, 12 FEBRUARY 1958

z Height (meters)	u Wind Speed (m sec_1)	Standard Deviation (m sec ¹)	Ā Wind Direction (degrees)	of Standard Deviation (degrees)	T Temperature (degrees C)	Standard Deviation (degrees C)	I Gustiness Ratio
4.6	3.7	0.85	179	14.2	£.2	0.56	0.22
11.9	7.4	68.0	177	14.0	5.7	0.57	0.19
13.3	7	0.87	174	1.ध	3.5	0.53	0.18
26.6	0.0	48.0	177	2.કા	3.2	6ħ * 0	71.0
53.9	5.1	0.78	178	11.2	3.2	64.0	0.15
1.2	5.2	4½°0	178	11.4	3.2	64.0	0.14
48.5	5.1	0.72	178	11.2	2.9	84.0	0.14
55.9	5.0	0.68	178	10.2	5.9	0.52	0.13
62.0	5.3	99.0	175	4.9	8.8	0.51	21.0

TABLE II WIND AND TEATHRATURE DATA FOR 1202-1501 FIST, 15 FISHBARY 1958

la ga,	fla.	L.	1-4	P.][[بالقار الم	! →ι .
Wind Standard Wind Speed Deviation Direction (m.cec 1) (m.cec 1) (degrees)	Standard Deviation (m sec 1)	Mind Directi (degroc	ton (s:	Stendard Deviction (degrees)	(degrees C)	Standard Deriction (dognoss C)	0.00000 0.0000 0.0000
5.5 1.35 257		257		22.5	12.8	6:0	() () ()
6.9 2.29 245		545		20.8	2.21	0.50	96.0
7.6 2.51 2 ⁴ 1		てする		52.0	12.5	٠ در ٥	6.53
7.9 2.56 242		545		21.8	11.8	84.0	0.52
8.2 2.65 245		245		22.3	9.11	0.43	0. 0.
3.5 2.74 246		246		21.8	11.9	0.41	0.32
8.7 2.73 246		245		20.4	11.9	††**•0	0.52
8.8 2.75 246		945		21.0	11.7	0.36	0.31
9.1 2.85 248		543		20.3	11.6	0.32	0.31

TABLE III

WIND AND TEMPERATURE DATA FOR 1334-1433 MST, 7 MARCH 1958

z Height (meters)	u Wind Speed (m sec 1)	Stendard Deviation (m sec_1)	Wind Direction (degrees)	G. Stendard Deviation (degrees)	Temperature (degrees C)	Grandard Stendard Deviation (degrees C)	I Gustiness Ratio
h.6	8.7	1.81	283	5.1	8-т	94.0	0.21
11.9	11.0	2.07	282	6.1	8.4	74.0	0.19
19.3	9.टा	2.15	280	6.7	ф.6	₩.0	0.17
9.92	13.4	2.03	280	5.5	ਸ ਼	79.0	0.15
33.9	14.0	2.0g	ag Z	5.7	4.3	84.0	0.15
41.2	14.5	2.20	284	5.⁴	4.5	94.0	0.15
48.5	15.1	2.22	281	8.4	4.3	0.45	0.15
55.8	15.4	2.21	281	6-4	4.3	0.45	0.14
05.0	15.9	2.24	283	д 6	₽.₽	6.45	₽1. 0

TABLE IV

WIND AND TEAPERATURE DATA FOR 1001-1600 MST BY THE HOUR, 15 MARCH 1961

			1001-1	1001-1100 MST		-	
2	la.	٩z	!<	g	[€+	٩e	_
Height (meters)	Wind Speed, (m sec)	Standard Deviation (m sec ⁻¹)	Wind Direction (degrees)	Standard Deviation (degrees)	Temperature (degrees C)	Standard Deviation (degrees C)	Gustiness Ratio
4.3	6.3	1.32	797	1.6.7	21.6	0.41	0.21
19.5	7.2	1.60	263	14.9	;	1	0.22
51.7	7.7	1.55	266	15.0	20.6	0.27	0.50
62.0	7.5	1.46	266	13.1	20.0	0.23	0.20
			1-1011	1101-1200 MST			
¥.3	2.4	1.52	268	19.8	22.5	0.38	0.32
19.5	5.3	1.6	265	17.8	;	;	0.31
31.7	5.8	1.64	268	15.1	21.4	0.35	0.28
62.0	5.7	1.60	267	15.3	20.9	0.33	0.28
			1201-1	1201-1300 NST			
4-3	8• 4	1.79	281	27.3	22.9	0,40	0.37
19.5	5.5	1.95	278	21.1	;	;	0.35
31.7	5.9	1.99	780 280	17.5	21.8	0.27	0.34
62.0	5.9	1.82	279	16.6	21.4	0.26	0.31

TABLE IV (Continued)

WIND AND TEMPERATURE DATA FOR 1001-1600 NST BY THE HOUR, 15 WARCH 1961

	I Gustiness		6.29	0.30	0.27	0.25		0.30	0.29	0.28	0.28		0.32	0.31	0.31	0.30
	Standard	(degrees C)	0.54	;	0.32	0.27		0.35	0.43	74.0	0.45		0.30	0.28	0.29	0.82
	न Temperature	(degrees C)	23.3	4	22.0	21.7		24.1	23.2	5 ⁴ .6	22.7		24.5	23.7	23.5	23.2
100	Standard	(degrees)	19.2	15.1	15.0	15.0	500	18.7	15.8	14.9	14.2	1600	25.9	21.8	21.2	25.2
1301-1400	A Wind	(degrees)	276	273	276	576	1401-1500	283	281	1 82	284	1501-1600	236	255	257	560
	or u Standard	(m sec 1)	19.1	1.94	1.90	1.74		1.45	1.61	1.68	1.67		1.44	1.60	1.69	1.69
	u Wind	m sec_1)	5.5	4.9	6.9	7.0		6-4	5.6	6.1	6.0		4.5	5.1	5.5	2.6
	z Height	(meters)	4.3	19.5	31.7	62.0		4.3	19.5	31.7	62.0		4.3	19.5	31.7	62.0

TABLE V

WIND AND TEMPERATURE DATA FOR 1801-2400 NST BY THE HOUR, 16 MARCH 1961

	1	Gustiness Ratio		0.34	ታሪ-0	0.33	0.33		Of O	2 6	٠. مين مين	0.25		16.0	71.0) T.O	0.14	0.11
	G∈	Standard Deviation	(degrees C)	0.26	0.32	0.26	0.22		0.32	7 %	0.23	0.19		0.30	420	t 100 0		0.54
	 	Temperature	(degrees C)	7.8	7.6	7.4	7.3		6.7	6.7	6.5	t-9		7.3	7.4	7 1		0.1
1801-1900 MST	g	Standard Deviation	/ deBrees /	18.1	17.0	15.9	14.2	1901-2000 MST	17.4	13.9	ाट. इ	9.3	2001-2100 MST	11.8	8.2	6.0	ָּאָר יָּרְ	
1801-1	¥	Wind Direction	(2220)	323	316	318	321	1901-2	304	297	298	298	2001-2	293	583	291	536	
	¶¤	Standard Deviation (m sec 1)		1.52	2.10	2.15	2.41		1.39	1.61	1.61	1.65		ま。	1.16	1.12	1.03	
	ļ¤	Wind Speed (m sec 1)		4.5	6.2	4.9	7.3		3.5	5.1	5.4	2-9		1.4	7.0	8.0	9.5	
	и	Height (meters)		£.4	19.5	51.7	62.0		₽.3	19.5	31.7	62.0		4.3	19.5	31.7	62.0	

TABLE V (Continued)

WIND AND TEAPERATURE DATA FOR 1801-2400 MST BY THE HOUR, 16 MARCH 1961

	I	Gustiness Ratio	0.27	0.25	0.24	0.21		0.46	0.43	91.0	04.0		0.17	0.13	0.10	0.07
	₽E÷	Standard Deviation (degrees C)	0,40	0.35	0-35	0.31		0.39	0.30	0.30	0.29		0.13	0.11	य:0	60.0
	ΙĘ·	Temperature (degrees C)	7.2	7.5	7.5	7.6		7.2	7.4	7.4	7.5		7.7	7.8	7.8	7.9
O NST	A	Standard Deviation (degrees)	21.9	12.9	10.0	6.0	OO MST	25.0	13.1	14.7	11.5	2301-2400 HST	6-3	4.1	3.4	2.5
2101-22-10 MST	◀	Wind Direction (degrees)	305	295	868	297	2201-2 300 MST	319	306	3Q \$	299	2301-24	295	588	291	293
	Ą	Stendard Devistion (m sec 1)	1.12	1.61	1.74	1.79		1.61	2.28	2.68	3.08		1.03	1.16	1.07	0.80
	la	Wind Speed (m sec 1)	1.4	6.5	7.3	4.8		3.5	5.3	5.9	7.7		0.9	9.1	10.2	12.2
	и	Height (meters)	4.3	19.5	31.7	0.59		₹.	19.5	31.7	0.50		4.3	19.5	31.7	08.0

TABLE VI

WIND AND TEMPERATURE DATA PER 10 MINUTE INTERVAL 12 FEBRUARY 1958 1001-1100 MST

1	ı	11								
8	1 🗗	5.0	7. 4	: 1	8	3.9	3.9	3.6	3.7	3.6
1051-1100	14	197	184	177	184	185	136	185	185	173
01	Ι¤	3.4	4.4	4.4	4.8	3.4	4.9	4.9	4.8	4.9
50	1 🗗	4.6	3.9	3.9	3.6	3.6	3.6	3.4	3.2	3.2
1041-1050	I 4	171	170	166	171	172	173	173	174	176
01	n -	3.8	1.7	L-4	4.9	5.0	5.1	5.1	5.1	5.3
40	- I	4.3	3.8	3.6	3.3	3.2	3.3	2.9	3.0	2.9
1031-1040	14	179	111	174	178	178	98	98	178	1
οτ	t #	3.8	1.4	4.8	5.1	5.2	5.3	5.2	5.2	•
ಜ	184	4.0	3.4	3.2	3.0	3.0	2.9	5.6	2.8	5.6
1021-1030	1 4	13g	179	130	181	183	78	183	182	621
ğ	l ä	3.7	4.6	1.4	4·0	5.1	5.2	5.2	5.2	5.3
ଷ	184	3.8	3.5	3.1	8.8	2.8	ر. ش	2.4	2.6	2.4
1011-1020	1 4	173	172	16 9	170	172	172	175	174	173
SI	Ìβ	3.5	7. 4	ļ.,7	4.0	5.0	5.1	5.1	5.1	5.4
10	164	3.6	3.0	2.9	5.6	2.6	2.6	2.4	2.2	2.1
0101-1001	١४	176	179	921	176	176	177	175	176	174
ST	1 8	4. K	4.3		თ. -#	4.0	4.9	8.4	4.8	5.0
TINE-MST	z Jeight (meters)	4.6	و.برر	19.3	26.6	33.9	3.⊑∜	્યું જ	55.8	62.0

Remarks: Wind speeds in m sec-1; Temperatures in degrees C.

TABLE VII

WIND AND TEMPERATURE DATA PER 10 MINUTE INTERVAL 13 Pebruary 1958 1202-1301 MST

TIME-MST	17	1121-2021	ជ	27	1212-2121	เ	27	1222-1231	띪	ង	1421-व्हरा	11.	ង្ក	1242-1251		य	1252-1301	120
z Height (meters)	ĺβ	14	1 64	1 12	14	l €-i	۱¤	14	1 64	1 =	1 €	164	٦٦	14	l €+	۱a	14	184
4.6	5.6	216	15.1	5.2	251	12.0	5.8	₹.	4.55	5.4	45.2	13.2	7.6	259	13.6	5.9	253	13.8
11.9	3.2	214	9.11	6.8	246	11.6	7.0	239	11.8	6.9	251	12·4	4.6	255	9.21	7.0	249	12.8
19.3	3.4	211	11.8	7.5	245	11.9	7.7	239	12.1	7.5	543	12.8	10.4	255	13.0	1.	238	13.2
56.6	3-4	211	11.3	7.9	247	11.3	8.0	241	11.6	7.9	2 ⁴ 9	7.51	10.8	255	12.2	8.0	248	12.5
33.9	3.6	215	11.5	8.3	251	11.5	8.3	245	11.8	8.2	252	12.3	11.2	258	1.ध	8.1	250	32.6
41.2	3.8	213	11.5	8.8	253	11.5	3.5	5 4 6	11.8	8.6	253	12.2	11.6	259	12.2	8.2	252	⁴ ∙टा
48.5	ۍ. و.	252	11.4	9.0	252	11.4	8.6	247	11.6	8.6	253	15.31	11.8	259	12.2	8.4	251	12.4
55.8	0.4	22.1	11.3	9.5	251	11.3	8.6	246	11.6	8.8	252	11.9	0.ध	258	11.7	8.4	251	12.1
0.90	4.2	227	11.3	9.6	253	11.3	9.0	250	11.5	9.0	254	†• टा	15.4	259	11.7	8.8	251	11.9

Remarks: Wind speeds in m sec⁻¹; Temperatures in degrees C.

TABLE VIII

WIND AND TEMPERATURE DATA PER 10 MINUTE HITERVAL 7 Merch 1958 1334-1433 MST

	164	-it	4.5	~ !	4.2	٠. ت.	0.4	ص. ف	3.9	ω ο,
1424-1433		1								
424	14	285	283	231	231	234	283	232	262	234
7	1 2	7.6	7-6	11.9	12.2	1.टा	13.0	13.6	14.0	14.2
23	184	4.6	4.2	4.5	4.3	4.2	4.2	4.2	4.1	4.1
1414-1453	14	277	275	274	275	276	277	275	516	277
17	13	7.8	9.6	30.8	12.1	12.3	13.0	13.6	14.0	74.4
13	E-1	4.3	4. 4	 	3.7	3.8	3.9	3.8	3.8	3.7
1404-1413	14	ಕ್ಟ	783 1	281	282	234	284	283	283	588
14	l B	≈ 4. 8)	10.1	11.5	4.51	9.5	13.2	13.8	14.0	₹-45
03	184	4.7	6.4	4.5	4.	4.2	4.2	4.2	4	4.7
1354-1403	14	236	284	262	292	283	294	233	282	285
13	1 3	8.9	11.8	13.3	13.8	14.6	15.0	15.6	15.8	16.4
53	164	5.0	5.2	ω.	્ય હ	9.4	\0. -=+	J. 4	4.6	4.6
1344-1353	14	232	290	273	273	230	237	230	230	282
57	13	9.6	इ.ध	13.3]⊹.7	15.5	0.9٢	16.5	16.9	17.4
43	164	5.6	5.4	η, ω	٠ <u>.</u>	3.	5.2	5.1	5.0	4.0
1334-1343	14	253	234 234	282	231	293	237	232	282	284
13	Ι¤	9.6	12.2	14.0	15.1	16.0	16.7	77.4	11.7	13.2
TIME-WST	Height (maters)	9:4	아.다	6) (a)	26.6	33.9	C	43.5	55.8	0.59

Remarks: Wind speed in m sec-1; Temperature in degrees C.

TABLE IX

WIND AND TEMPERATURE DATA PER 10 MINUTE INTERVAL, 15 MARCH 1961

1001-1010 1011-1020		ı						-			2	***************************************
		A	E-1	B	Ā	E	n	Ā	ñ	ın	Ā	Œ-4
	9.4. 9.4.	288 288 288 288	21.1	۲-۲- هنځ	158 158 158 158 158 158 158 158 158 158	1 1	0 0 1 0	274	20°4	8°£	273	6.68
		270	21.6	3.5	270	ı	ω Θ	573	2 2	- 6	32	0.0
031-1040	5.8	5 <u>7</u> 9	21.6	6.2	261	1	6.1	₹	20.5	.89	\$?	10.01
.041-1050	5.7	263	22.0	6.4	5 62	,	6.9	565	80.8	9.9	561	20.3
051-150	0.7	250	21.8	4.5	243	1	8.4	22,	20.6	0	253	20.00
0111-101	٥.	862	22.1	5.4	<u>5</u> 61	,	5.9	265	20.9	9	00/0 101 101	202
0211-111	4.0	265	22.4	5.7	₹ 8	1	6.1	56%	21.4	0.9	263	50.9
21-138 21-138	φ,	27,1	22.4	٠ <u>٠</u>	565	•	0.9	88	21.4	6.0	265	ς Ω.
047751	۳- ا	え	23.	4.4	253		φ. -†	253	21.5	4.6	259	21.0
11:1-1:50	٠. س	88 188	9.8	-	563	•	5.2	27.7	21.6	5.2	27.1	21.1
151-1200	0.	586	80	6.1	281		9.9	283	21.7	6.7	281	21,3
		279	6.0	6.3	273	(6.9	සූ	21.8	9.9	277	21.3
_		278	35.tr	6.2	273	,	6.5	5 <u>1</u> 5	51.6	6.2	276	23.5
		8	8 6.	5.¢	5	1		, 28.	21.7	5.6	283	5
	0.0	563	23.1	-# -#	88	•	<u></u> -	2T2	.0.	7	1400	21.7
		t d	23.1	2.5	8 8 8	ı	ο, ο	₹ *	21.7	6.2	586 860	23.3
1251-1300	٠ <u>٠</u>	682	23.1	o.	88 98	•	7. ⁴	5 3 3	21.9	5.6	281	21.6
301-1310	ر نور	<u>ල</u>	23.5	<u>ئ</u>	546	•	6.1	579	21.8	7.8	279	21.6
311-1320	٠, ١	ည လူ (55.9	۲-9	513	•	Į.9	සු	21.7	6.7	278	21.3
321-1330	2	Š,	23.5	0.	, 33		1.6	58e	25.2	7.8	287	21.7
		267 1057	9.0	0.0	98	1 6	<u>ښ</u>	8	8.3	7.3	202	21.9
) () () ()	200	بر مرد	32	N 8	0 1	လ လ ပ	Q Q	, 6,	გ წ	21.9
-	0 0	200	7000	, c	T ô	3 8	<u>, , , , , , , , , , , , , , , , , , , </u>	5) S	9 6	o.,	SS SS	21.7
		, % , %	9	۰ د د	ŧ 8	9.5	• •	8 8	, K.	4. 0 .	500 700 700 700 700	21.9
		3 6	7) t	700	7.00	*,	7.0	20.5	÷,	æ 80 •	55.
י סלולר בכיו	- 4	y é	1.0	- '	8 6	23.2	2 0	<u></u>	9. 6.	6.1	283	83 9
0145 545	· ·	n t	7 0	•	8	23.3	0. <u>/</u>	£	23.1	6.9	2 3	& %
0641-144	10	Ž,	٠. خ	ρ, O	, 00 100 100 100 100 100 100 100 100 100	23.4	4.0	88 88 87	23.2	6.5	683 83	6
0151-105	ייכ	να 0 α 0 α	# V	<u>ب</u> ت	000 000 000	e t	9	237	23.6	4.0	2(1)	23.5
יין	·	֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֡֓֡֓	2 6	† (2 (7	O :	O V	23.3	0.0	74.I	23.1
1521-1530	\wo	8,8		ν Δπ	200 200 200 200 200 200 200 200 200 200	200	יי סית	38	0, c	9.0	84	818 670
ין טקאר בנצא		920	יו כ) (9 6	\ \ \ \ \	7,	2.0		g,	2.5
41-1550	• r!	8 . ‡	- r	~± -10	? .	20 g		5.5 7.5	23.5	เก๋น	₹ 6	, 23, 23, 24, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27
551-1600	6,	267	24.5		₩	3.8	0.9	267	23.5	,r,	2,6	30

15

TABLE X

WIND AND THEREATURE DATA PER 10 MINUTE INTERVAL, 16 MARCH 1961

	ΙΕΗ	すってっているこう ちょう マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	သထ
62.0	14	% % % % % % % % % % % % % % % % % % %	888
	15	たらよる 000000 40 co	# 22 22.21
	164	トートー・ころるるのののでって!!!!! よるようでするすうなるない。 	7.9
31.7	ΙΨ	######################################	38
·	13	- * * + * * * * * * * * * * * * * * * *	10.7
	IC-I	ててててててるるるるなっててててててていることできてててている。	7.90
19.5	Ā	~ % # & & & & & & & & & & & & & & & & & &	88
	12		9.00
	16-1	けってきらい こくらららららい コート・ト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2.0.
4.3	ΙΨ	######################################	255
	ıa	; שמתעעעעשמעשששששששששששששששששמטמסרעשר בין טממממממט העוס היהרי- ביש היריד ביש הייד מסמים מסמס בריד בי	6.0
Height, meters	Time, MST	1801-1810 1811-1820 1811-1820 1831-1820 1831-1830 1831-1	2341-2550

Remarks: Wind speeds in m sec 1. Temperatures in degrees C.

TABLE XI

BOUNDARY PARAMETERS BY 10 MINUTE INTERNALS, 12 PEBRUARY 1958

L.	۵.	a	N ^O	* 'a	္မခ		<u> </u>	M
Time	Pressure	Density	Roughness	Friction	Coefficient	Surface	Eddy	Macro-
Interval			Length	Velocity	Jo.	Stress	Viscosity	Viscosity
NST	ם	E	ca H	ст sec_1	Drag	dynes c	"2 cm2 sec 1 x 104	Cas sec 1
0101-1001	85.9	77271	",	63		0.970	村全会。0	
1011-1050	6.58	3.2111	W)	60	0.035	1.08	0,530	
1021-1050	885.9	1111.8	8.4	R	0.015	7-1	6.589	153.6
1051-1040	885.9	1110.6	6. 4	123	0.015	1.20	0.507	161.7
1041-1 0 50	883.9	1109.5	(A)	n	6.5.0	ii ii rd	7-56-2	151.7
0011-1401	683.9	1107.8	ंड हरे	Os Ou		8.	48€.0	150.5

TABLE XII
BOUNDARY PARAMETERS BY 10 MINUTE INTERVALS, 13 FEBRUARY 1958

c,	ρ.	۵	NO	* =	္မရ		×	ka
Time Interval	Time Pressure	Density	Roughness Length	Friction Velocity	1 Coefficient	Surface Stress	Eddy Viscosity	Macro- Viscosity
NST	Ą	e as as	. 5	cm sec_1	Drag	•	cm ² sec ¹ x 10 ⁴	cm² sec 1
1202-1211	869.3	1062.4		જ		0.50	0.405	81.4
1221-2121		1062.8	7.2	ß	0.018	2.59	0.920	360.0
1222-1231		1061.3	7.2	ß	0.018	2.58	0.920	360.0
1232-3541	869.3	1058.3	7.5	R	0.019	2.93	0.957	390.0
1242-1251		1056.9	13.0	æ	0.024	7.33	1.564	1105.0
1252-1301	869.3	1056.1	8.2	K	0.019	3.26	1.030	459.2

TABLE KILL

BOUNDARY PARAMETERS BY 10 MINUTE INTERVALS, 7 MARCH 1958

M Macro- Viscosity	cm² sec 1	2632.2	2652.2	1922.4	1564.2	1205.6	1105.0
Ky Eddy Viscosity	cm2 sec 1 x 104	2.263	2.263	1.987	1.822	1.619	1.564
Te Surface Stress	dynes cm ⁻²	16.04	16.08	₹.SI	10.80	8.31	7.89
C _D Coefficient of	Drag	0.032	0.032	0.029	0.028	0.025	0.025
f. Friction Velocity	cm sec_1	ध्य	ध्य	108	83	88	æ
z Roughness Length	CE	21.4	21.4	17.8	15.8	13.7	13.0
ρ Density	E ES ES	1088.2	1090.5	1091.7	1093.2	1092.1	1092.9
p Pressure	줱		870.1	870.1	870.1	870.1	870.1
t Time Interval	MST	1354-1345	1344-1353	1354-1403	1404-1413	1414-1423	1424-1433

TABLE XIV BOUNDARY PARAMETERS BY 10-MINUFE INTERVALS, 15 MARCH 1961

t)	<u>ن</u> م	a.	N _C	* 3	້	۲,	<u>√</u>	==
Time Interval	Time Pressure Interval	Density	Roughness Length	Friction Velocity	Coefficient of Drag	Surface Stress	Eddy Viscosity	Macro- Viscosity
HST	自	E ES ES	CH	cm sec "1		dynes cm ⁻²	cm2 sec 1 x 104	cm2 sec 1
0101-1001	877.3	1039.4	10.0	٤	0.022	4.98	1.288	700.0
1011-1020	877.3	1058.3	9.5	88	0.022	4.68	1.251	o.546 0.046
1021-1030	877.3	1037.5	9.5	88	0.022	4.68	1,251	0.949
1051-1040	877.3	1057.6	ж. Ж.	9	0.021	3.67	1.104	504.0
1041-1050	877.3	1035.5	လ လ	农	0.021	3.53	1.067	⁴ 75.6
1051-1100	877.3	1035.1	11.2	ώ	0.025	6.35	1.435	875.6
0111-1011	877.1	1034.9	9.6	8भ	0.019	2.36	0.883	516.8
1111-1120	876.8	1053.8	1.	苡	0.020	5.01	466.0	105.0
०६११-१त्रा	876.4	1035.4	6.5	¹ , 5	0.018	2.14	948.0	299.0
1131-1140	876.0	1031.6	5.4	38	0.017	1.47	0.699	205.2
0511-1411	875.7	1031.6	5.5	O††	0.017	1.62	0.736	224.0
1151-1200	875.4	1030.5	6.8	64	0.019	2.45	0.902	353.2
0121-1021	875.1	1029.8	7.5	47	0.020	3.00	10.00	405.0
0221-1121	874.8	1051.1	7.5	东	0.020	3.01	466-0	405.0
0521-1230	87,4.5	1029.1	6.3	45	0.018	2.05	0.828	283.5
0421-1521	874.2	1028.0	5.3	37	0.017	1.40	0.681	196.1
0521-14ZI	873.9	1027.6	9.9	8 1	0.019	2.34	0.885	316.8
1251-1300	873.6	1027.3	6.0	£	0.018	1.87	0.791	258.0

TABLE XIV (Continued)

BOUNDARY PARAMETERS BY 10-MINUTE INTERVALS, 15 WARCH 1961

4	d	a	N°	* 'n	္မ	10	M _X	k
Time Pressure Interval	Pressure	Density	Roughness Length	Friction Velocity	Coefficient of Drag	Surface	Eddy Viscosity	Macro- Viscosity
MST	Ą		, and	cm sec_1		dynes cm ⁻²	cm ² sec ⁻¹ x 10 ⁴	cm² sec¹1
1301-1510	873.4	1026.3	8.8	63	0.022	4.06	1.159	1.45
1311-1320	873.3	1027.7	7.0	ድ	6.00	2.5	0.920	350.0
1321-1350	873.2	1025.5	8.8	63	0.022	4.06	1.159	554.4
1331-1340	873.1	1025.0	0.6	ඡ	0.022	4.20	1.178	576.0
1341-1350	875.0	1026.2	4.7	53	0.020	2.88	0.975	392.2
1351-1400	872.9	1026.1	6.1	#	0.018	1.95	0.810	268.4
0141-1041	8.278	1024.7	6.8	64	0.019	2.43	0.902	333.2
1411-1450	872.7	1023.1	5.0	太	910.0	1.18	0.585	170.0
1421-1430	872.6	1022.6	6.3	45	0.018	2.03	₽ <i>LLL</i> 0	283.5
1431-1440	872.5	1022.3	7.8	比	0.020	5.09	0.946	129.0
1441-1450	872.4	1022.1	7.0	ድ	0.019	2.53	0.860	350.0
1451-1500	872.3	1021.3	9.9	\$	0.019	2.33	0.826	316.8
1501-1510	872.2	1020.5	٠. ٢	37	0.017	1.39	9.636	196.1
1511-1520	872.1	1020.7	0.9	转	0.018	1.86	0.740	258.0
1521-1530	872.0	1021.3	6.5	3	0.018	2.12	0.791	299.0
1531-1540	871.9	1019.8	5.8	#	0.017	1.68	0.705	257.8
1541-1550	877.8	1019.6	¥•€	፠	0.017	1.46	0.65 ^t	205.2
1551-1600	871.7	1020.2	9.9	8 2€	0.019	2.33	9:850	316.8

TABLE XV
BOUNDARY PARAMETERS BY 10-MINUTE INTERVALS, 16 MARCH 1961

t)	ė.	Q.	2	#.n	ర్	1-	Ϋ́	N
Time Pressure Interval	Pressure	Density	Roughness Length	Friction Velocity	Coefficient of Drag	Surface Stress	Eddy Viscosity	Macro- Viscosity
MST	qu	gra cra-3	E S	cm sec -1		dynes cm_2	cm² sec 1 x 104	cm2 sec_1
1801-1810	871.8	1080.6	6.3	45	0.018	2.14	0.774	283.5
1811-1820	871.8	1081.4	4.2	27	0.015	0.78	194.0	113.4
1821-1830	871.8	1082.2	0.4	25	0.015	9.68	0.430	100.0
1831-1840	871.8	1079.9	7.1	δ.	0.019	2.76	0.860	355.0
1841-1850	871.8	1079.9	4.8	9	0.021	3.81	1.032	504.0
1851-1900	8.178	1081.0	7.	29	0.019	2.65	0.860	355.0
1901-1910	871.3	1083.4	7.7	ያ	0.019	2.65	0.860	355.0
1911-1920	877.8	1084.5	€. 4	88	0.015	0.83	284.0	120.4
1921-1950	877.8	1085.3	3.2	16	0.013	0.28	0.275	51.2
1931-1940	871.8	1085.7	4.6	31	910.0	1.06	0.533	142.6
1941-1950	871.8	1086.4	7.4	53	0.015	68.0	0.499	127.6
1951-2000	8.178	1086.8	7.4	82	0.016	1.13	0.550	150.4
2001-2010	871.8	1084.9	9*#	31	0.016	1.06	0.535	142.6
2011-2020	871.8	1083.0	6.3	45	0.018	2.15	0.774	283.5
2021-2030	871.8	1081.8	6.3	45	0.018	2.15	0.774	283.5
2031-2040	871.8	1081.8	6.3	き	0.018	2.15	η. L. O	283.5
2041-2050	877.8	1082.6	5.6	Q.	0.017	1.70	0.688	224.0
2051-2100	871.8	1085.4	6.5	3	0.018	2.25	0.791	299.0

TABLE XY (Continued)

Time Pressure Interval	e.	d	NO	3	ဗ	, o	××	E
MST	Pressure	Density	Roughness Length	Friction Velocity	Coefficient of Drag	Surface Stress	Eddy Viscosity	Macro- Viscosity
	Qu	ga cm 3	, CM	cm sec 1		dynes cm ⁻²	cm ² sec ⁻¹ x 10 ⁴	cm² sec 1
2101-2110	871.8	1081.4	7.7	55	0.020	3.27	946.0	423.5
2111-2120	871.8	1081.8	6.3	45	0.018	2.15	1,777	283.5
2121-2130	871.8	1083.0	5.8	14	0.017	1.78	0.705	257.8
2151-2140	871.8	1083.8	8.4	었	0.015	1.11	0.550	153.6
2141-2150	871.8	1084.5	ተ ተ	30	0.017	1.00	0.516	132.0
2151-2200	871.8	1085.3	3.9	5 4	0.015	49.0	0.413	93.6
2201-2210	871.8	1085.7	3.6	21	C.014	24°0	0.361	75.6
2211-2220	871.8	1084.5	3.5	8	0.014	դ փ•0	0.344	70.0
2221-2230	871.8	1085.8	3.9	23	0.013	0.55	0.396	89.7
2231-2240	871.8	1083.4		ß	0.015	0.68	0-430	100.0
2241-2250	871.8	1081.8	6.2	43	0.017	1.95	0.740	566.6
2251-2300	871.8	1081.4	8.8	છ	0.022	4.28	1.084	554.4
2501-2510	871.8	1081.4	8.2	፠	0.021	3.69	0.998	4.75.6
2311-2320	871.8	1081.8	10.0	88	0.022	5.03	1.170	680.0
2321-2330	871.8	1081.4	7.5	ፈ ሊ	0.020	3.15	0.929	405.0
2331-2340	871.8	1081.4	8.2	፠	0.021	3.69	0.998	475.6
2341-2350	871.8	1080.6	9.5	8	0.022	4.72	1.135	627.0
2351-2400	871.8	1080.6	0.6	ಶ	0.022	작 #	1.101	576.0

Figure 1

figure 2

LOGARITHMIC WIND PROFILE FOR 1404 - 1413 MST 7 MARCH 1958, y = 0.1488e^{0.4207}×

Figure 3

7 MARCH 1958, y = 0.2484e0.3861×

Figure 4

Figure 5

16 MARCH 1981, $y = 0.054e^{\pm .4275 \times}$ Figure 6.

LOGARITHMIC WIND PROFILE FOR 1821 - 1830 MST 16 MARCH 1981, $y = 0.045e^{\frac{1}{2} \cdot \frac{5726}{2}}$

Figure 8

LOGARITHMIC WIND PROFILE 1831 - 1840 MST 18 March 1961, y = 0.071e^{0.7032}× Figure 8

LOGARITHMIC WIND PROFILE 1901 - 1910 MST 18 MARCH 1981, 8 = 0.0809e^{0.7555}× Figure 11

All values of roughness length, friction velocity, drag coefficient, surface stress and eddy viscosity presented in Tables XI to XV appear to be reasonable and are in good agreement with those of other investigators, notably Deacon [6] and Sheppard [7] who found roughness lengths of 9 cm for thick grass up to 50 cm high, while drag coefficients for thick grass, assuming the Rossby [3] profile, were found to be on the order of 0.032,

The Wind Profile: Since neither the logarithmic profile nor the power law is actually valid under diabatic conditions, few conclusions may be drawn concerning the observed wind profiles. It can be generally stated that the power law would provide the best fit for this particular sample of data, which is in agreement with Swanson and Hoidale [8].

Test for a Fully-Rough Surface: With the concept of fully-rough flow, the influence of viscosity is considered to be negligible. Nikuradse [9] has proposed tests for smooth and rough surfaces, which can be stated as

Smooth Flow:
$$u_{\star}z_{0} < 0.13$$

Fully-rough Flow:
$$\frac{M_{\star} z_0}{2} > 2.5$$

assuming that the relation $z_0 \sim \epsilon/30$ can be accepted.

The quantity $u_\star z_o$ is known as the macro-viscosity and is denoted by N. Nikuradse's criteria can thus be stated

Smooth Flow: $N < 0.13 v = 0.02 \text{ cm}^2 \text{ sec}^{-1}$

Rough Flow: $N > 2.5 v = 0.4 cm^2 sec^{-1}$.

Values of N are presented in Tables XI through XV.

It is seen that all data meet the rough flow criteria and the hypothesis assumed is valid.

Turbulent Flow Indicators: Cramer [10] shows that the standard deviation of wind direction is a good indicator of stability and, of course, turbulent intensity. Cramer's estimates are presented in Table XVI.

TABLE XVI

ESTIMATED RANGE IN STANDARD DEVIATION OF AZIMUTH WIND DIRECTION, TA, NEAR GROUND LEVEL FOR VARIOUS STABILITY STRATIFICATIONS

Smooth Site	Rough Site
2 - 4	2- 6
4- 6	7-15
6- 8	10~15
10-15	15-20
20-25	25 = 30
	2- 4 4- 6 6- 8 10-15

It is clear from Tables I to X and Figure 14 that the data agree well with Cramer's hypothesis. This is reflected by the gustiness ratio or intensity of turbulence

where I is the gustiness ratio and $^{\sigma}u$ is the standard deviation about the mean wind speed $^{\circ}u$. Figure 14 is a plot of the standard deviation of direction vs stability. The stability ratio represents the ratio of temperature difference in degrees Celvius between 4.3 or 4.6 meters and 25.6 or 31.7 meters to the square of the mean wind speed at 19.3 or 19.5 meters, depending upon the data sample used.

Another indicator of turbulent motion in the boundary layer is an apparent inverse relationship between the variance of wind direction and the eddy viscosity. It appears that as the variance increases, the eddy viscosity decreases, indicating a breakdown of the viscous stresses with increased mixing.

withile boundary conditions are dependent upon wind speed and are necessary for establishing the characteristics of turbulence for an area, it is obvious that the variance of wind direction is the determining factor in turbulent intensities and the propagation of turbulent motion downstream. Blackadar, Panofsky, et al. [11] show from Taylor's Hypothesis that Lagrangian and Eulerian standard deviations of azimuth are approximately equal during daytime, and that measurements at a fixed site are valid some distance downstream. Thus, Taylor's Hypothesis can be used to evaluate the behavior of the wind after it has passed a fixed point

 $\sigma_{\rm A}$ DEGREES STABLITY RATIO T — T $_{\rm O}/_{\rm U}^2$ vs. STAUDARD DEVIATION OF DIRECTION FIGURE 14.

39

CONCLUSIONS

Turbulent characteristics of the atmospheric boundary layer in the vicinity of the U. S. Army Electronics Research and Development Activity Meteorological Research Tower are comparable to those observed at other locations. It can be concluded that the roughness length increases with increasing wind speed and varies with wind direction. This is attributed to changes in the fetch and the height of the roughness elements from different exposures due to wind direction shifts. The coefficient of drag of the surface varies with wind direction, exhibiting the same characteristics as the roughness length with relation to the fetch and roughness elements.

The standard deviation of wind direction was found to vary with the lapse rate while the eddy viscosity appears to be inversely proportional to all standard deviation of direction. All boundary conditions were found to be dependent upon wind speed and to some degree dependent on wind direction. The standard deviation of wind direction was determined to be a good indicator of turbulence.

LIST OF SYMBOLS

Wind Direction, Degrees Α Mean Wind Direction, Degrees Ā c_{D} Coefficient of Drag I Gustiness Ratio Eddy Viscosity K_{M} Macro Viscosity N Ambient Pressure Temperature, Degrees Celsius T Karman's Constant Wind Profile Index p Horizontal Wind Speed u Instantaneous Horizontal Velocity u* ū Mean Wind Speed Friction Velocity Vertical Velocity Instantaneous Vertical Velocity Height 2 Roughness Length Zo Roughness Element Density Shearing Stress Surface Shearing Stress τ_{0} Kinematic Viscosity

RE FERENCES

- Rachele, Henry and M. E. McLardie, "The White Sands Missile Geophysics Research Tower," Special Report 7, U. S. Army Signal Missile Support Agency. White Sands Missile Range, New Mexico, July 1957.
- Taft, Paul H. and K. R. Jenkins, "Weather Elements in the Tularosa Basin," Special Report 40, U. S. Army Signal Missile Support Agency, White Sands Missile Range, Nev Mexico, July 1960.
- Rossby, C. G., Meteorological Papers, 1, 4. Massachusetts Institute of Technology, Cambridge, Mass., 1932.
- 4. Lettau, H., "Atmosphärische Turbulenz," Leipzig, 1939.
- Sutton, O. G., <u>Micrometeorology</u>, McGraw-Hill Book Company, Inc., New York, 1953.
- Deacon, E. L., "Vertical Diffusion in the Lowest Layers of the Atmosphere," Quarterly Journal of the Royal Meteorological Society, 74: 89-108, 1949.
- Sheppard, P. A., "The Aerodynamic Drag of the Earth's Surface and the Value of Von Karman's Constant in the Lower Atmosphere," Proceedings of the Royal Society of London, A. 188: 208-222, 1947.
- Swanson, Robert N. and M. M. Hoidale, "Low-Level Wind Profile Prediction Techniques," Progress Report Nr. 4, U. S. Army Signal Missile Support Agency, White Sands Missile Range, New Mexico, January 1962.
- 9. Nikuradse, J., Verhandl. deut., Ing. Forsh., 361, 1933.
- 10. Cramer, H. E., "Engineering Estimates of the Power Spectra of the Horizontal Components of Wind Velocity," Paper presented at the Third Conference on Applied Meteorology at Santa Barbara, California, 5-8 April 1960.
- 11. Blackadar, A. K., H. A. Panofsky, G. E. McVehil, and S. H. Wolleston, "Structure of Turbulence and Mean Wind Profiles with the Atmospheric Boundary Layer," Pennsylvania State University, State College, Pennsylvania, 1960.

U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT ACTIVITY WHITE SANDS MISSILE RANGE NEW MEXICO

WILLIAM G, SKINNER COLONEL, SIGNAL CORPS COMMANDING

Approval. Technical Report ERDA-100 has been reviewed and approved for publication:

CLARENCE E. MORRISON

Lt Colonel, Signal Corps

Director

Environmental Sciences Department

WILLIS L. WEBB

Chief Scientist

Environmental Sciences Department

Acknowledgements. Recognition is due Mrs. Sue Carnes and Miss Mary Kay Barnes for their efforts in programming the data for computer processing.

Distribution. This report has been distributed in accordance with SELWS-M List Nr. 2. Initial Printing 329 copies.

DDC Availability. Qualified requesters may obtain copies of this report from:

Defense Documentation Center Cameron Station Alexandria, Virginia

HEADQUARTERS U. S. ARMY ELECTRONICS RESEARCH AND DEVELOPMENT ACTIVITY WHITE SANDS MISSILE RANGE NEW MEXICO

December 1963

- 1. Technical Report ERDA-100 has been prepared under the supervision of the Environmental Sciences Department and is published for the information and guidance of all concerned.
- 2. Suggestions or criticisms relative to the form, contents, purpose, or use of this publication should be referred to the Commanding Officer, U. S. Army Electronics Research and Development Activity, ATTN: SELWS-M, White Sands Missile Range, New Mexico.

FOR THE COMMANDER:

L. W. AEBRO Major, AGC Adjutant

Accepted and Devel New 'Stroo. New 'Stroo. HAMATERISTICS OF THE F PERFE STROOT THE F And THE STROOT THE F PERFE STROOT THE F PERFE STROOT THE S		1. Wind 2. Temperature 3. Turbulence 4. Metaorology Qualified requesters may obtain copies of this report from: Defense Documentation Center Cameron Station Alexandria, Virginia
1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
From the state of		
from obtain		* 'gg
of of the control of	, a	Qualified requesters may obtain copies of this report from: Defense Documentation Centex Cameron Station Alexandria, Virginia
from the fro	\$ \$	Qualified requesters may obtain copies of this report from: Defense Documentation Center Cameron Station Alexandria, Virginia
from obtain	\$ 8	obtain copies of this report from: Defense Documentation Center Cameron Station Alexandria, Virginia
		Defense Documentation Center Cameron Station Alexandria, Virginia
		Defense Documentation Center Cameron Station Alexandria, Virginia
	ranginess elements. Onta are presented for the recording periods during the late winter and early spring of 1958 and 1961. Computations of the basic wind profile	Alexandria, Virginia
. Wind	Data are presented for the recording periods during the late winter and early spring of 1958 and 1961. Computations of the basic wind profile	
Page .:	and 1961. Computations of the basic wind profile	
ACCESSION NR. ACCESSION NRe.vearch and Tevelopment Activity, 1. Wind		
ACCESSION NR.	and Lambarance paramethrs are presented in tabular	
ACCESSION NR.		UNCLASSIFIED
ALLESSION NK		
nevental and Development Activity, 1.	ACCESSION NR.	UNCLASSIFIED
Entrary Discourse of Articles Department with the Samuka Bina.	Free comments of the search and Development Activity,	1. Wind
Sile Fange hem Mekico.	Si'v Sange, New Mexico.	2. Temperature
TURBULENCE PRACTERISTICS OF THE FIRST 62 WETERS 3. Turbulence	TURBULLING CHARACTERISTICS OF THE FIRST 62 METERS	J. Turbulence
OF INC. A TRANSPORTED by Frank V. Hansen, ERDA-IOO. December As adopting this.	CF THE ATMISPHERE, by Frank V. Hansen, ERDA-100,	
<u>.</u>	יארכותנים ביסו ביסולים ישנים ביסולים ישנים ביסולים ביס	4. Meteorology
	Turbulent characternstics of the first 62 meters of the atmosphere in the wichity of the H. S. Army	Can 1 (f. in)
Electronics Research and Davelopment Activity Moneour obtain copies of this report	_	obtain copies of this report
	conditions. The assumption was made that the	from:
roughness length is a constant, but dependent upon Defense Decementation Center the wind direction, ferch, and the beinds of the		Defense Documentation Center
roughness elements. Virginia.	TOLENESS elements.	Cameron Station
	Data are presented for five recording periods	
and 190 Computations of the basic wind profile	during the late winter and early spring of 1958 and 1961. Computations of the basic wind profile	
and it	and turbuience parameters are presented in tabular	
INCLASSIFIED		INCLASSIFIED